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Procedures for Optimization Problems

with a Mixture of Bounds and General Linear Constraints

Philip E. Gill, Walter Murray,
Michael A. Saunders and Margaret H. Wright

Systems Optimization Laboratory
Department of Operations Research

Stanford University

Stanford, California 94305

ABSTRACT

¥ When describing active-set methods for linearly constrained optimization, it is often con-
venient to treat all constraints in a uniforn manner. However, in many problems the linear con-
straints include simple bounds on the variables as well as general constraints. Special treatment
of bound constraints in the implementation of an active-set method yields significant advantages
in computational cffort and storage requirements. In this paper, we describe how to perform the
constraint-related steps of an active-set method when the constraint matrix is dense and bounds
arc treated separately. These steps involve updates to the T'Q lactorization of the working set of
constraints and the Cholesky factorization of the projected Hessian (or Hessian approximation). -
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Office Contract DAAG29-79-C-0110.

ortic

copy
INSPECTED

3

N
Acéossion Eot~
'NT1S GRAXI
DTIC TAB 0
Unagaorced ]

Justigicntion — — —— —

By —

-— e

Distribution/

":;raila!: 111ty Codes N
" gvedl and/er
Dist ' Special

AL L

N




1. Introduction

1. Introduction

Constrained optimization problems often include a set of linear incquality constraints, which may
be written in scveral different forms. We consider the following three:

LC1 Az > b;
LC2 Az = b, t<z<u
LC3 lg(;)zSu.

For convenience we shall always assume that A is a matrix with m rows and n columns. The
dimensions of other quantities follow in each case. The constraints involving A are called general
constraints, and incqualities of the form £ < z < u are called simple bounds or just bounds.
If necessary, some of the components of £ or u may be taken as —oo or co. (Note that general
equality constraints may be represented in LCI by extending the relatious to include equality,
and in LC3 by specifying the same value for the corresponding clements of £ and u.)

The forms LCI - LC3 are equivalent, in the scnse that any sct of linear inequality constraints
may be expressed in each of the forms, given suitable definition of 4, b, £, u and z. The primary
feature of interest in LC2 is that gencral inequalily constraints are converted to general equality
constraints by adding slack variables.

The most popular methods for treating linear inequality constraints are called active-set
methods (sce Section 2). An cssential characteristic of these methods is that they maintain a
prediction of the set of constraints that are active at the solution (this prediction will be called
the working set). The working set is updated by adding and delcting constraints as the itcrations
proceed. In presenting the formal description of an active-set method, it is often convenicnt
to treat all inequality constraints uniformly, since the strategics that determine changes in the
working set are usually unaffected by whether or not a constraint is a general constraint or a
simple bound.

In any implementation of an active-set mcthod, changes in the working sct involve updates
to a certain matrix € associated with the working sct (and often to other matrices as well). The
data structures choscn for an implementation will inevitably be more cificient for one constraint
form than another. If the implementation is based on form LCi, changes in the working set lead
to changes in the rows of C, while with form LC2, changes in the working sct lead to changes in
the columns of C. With form LC3, the changes involve both the rows and the columns of C.

Corresponding changes must also be made to some factorization of C. For reasons of
simplicity, past implementors have dealt almost exclusively with forms LCI and L.C2. Some
cxamples in the literature follow.

LCI, dense A: Rosen (1960) and many others for nonlincar programs (see Gill and Murray, 1974,
for further references); Stoer (1971) for constrained linear least squares.

LCI, sparse A: Buckley (1975) for nonlinear programns.

LC2, dense A: Mifllin (1979) for constrained lincar least squarces; Barlcls (1980) for lincar pro-
grams.

LC2, sparse A: Commercial mathematical programming systems for linear and integer programs;
Murtagh and Saunders (1978, 1982) for nonlincar programs.

The disadvantage of implementations based on LC1I or LC2 arises when the “natural” state-
ment of the constraints corresponds most closely to LC3 (i.e., when there is a significant number
of bounds in LC! or general incqualities in 1.C2). In such cascs, a large proportion of the rows or




2 Optimisation with a Mixture of Bounds and Cencral Constraints

columns of C will be those of the identity matrix:

0 I C, 0)
= C =
¢ (c. Cz) or (Ca I

respectivcly. Maintaining a factorization of the whole of C thercfore involves more than the ideal
amount of storage and work. (Certain economics do arise automatically if C is trcated as a sparse
matrix, but much of the objection remains.)

Implementations based on LC3 cffectively take advantage of the abave structure in C. Few
authors have previously considered the associated complications. Zoutendijk (1970) and Powell
(1975) have considered how changes in the working set may be performed when C is square (with
varying dimension) and its inverse is updated in product form. Gill and Murray (1973) discussed
the naturc of the updates required in a non-simplex linear programming mcthod based on an
orthogonal factorization of C.

In this paper we discuss the implementation of an active-set method suited to constraints of
the form LC3, with A treated as a dense matrix. We deseribe how to update the T'Q factors of
the matrix C and the Cholesky factors of the accompanying projected Ilessian (or approximate
Hessian). The procedures have been implemented in computer software for lincar and quadratic
programs and for lincarly constrained optimization, as described in Gill et al. (1982a,b). The
principal advantages in dealing with LC3 are as follows.

1. The matrix to be factorized has dimension m, X nen, where m, < min{m,n} and n., < n.
Further, m, and n,, are often much smaller than these bounds.

2. When finite differences are used to approximate derivatives, special treatment of bounds may
lead to significant cconomies in function evaluations.

3. Certain methods for semi-definite and indefinite quadratic programming may construct a
temporary sct of simple bounds in order to begin optimization. For such methods, the ability
to handle bounds cfficiently is crucial even if the original problem docs not contain bounds.

The first advantage is best illustrated by the case of linear programming. Standard implemen-.
tations of the primal simplex method (Dantzig, 1963) apply to constraints in the form LC2. These
arc most cflicient when m <€ n, since the matrix to be lactorized is always m X m. If most of the n
variables in 1,02 arc slack variables, the standard device for avoiding gross inefficiency is to solve
the dual problem. In contrast, il the form LC3 is assumed when implementing the simplex method
(the most famous of all active-set methods!), then maximum eflicicncy is obtained rcgardless of
the ratio of m to n. This advantage is all the more important for nonlincar problems, where the
device of solving the dual is not necessarily applicable or efficient.

The techniques given here may be applied to active-set methods for general optimization
problems, whenever lincar and nonlinear constraints are treated scparately — particularly in-
methods that solve a sequence of quadratic programming subproblems (e.g., Murray, 1969; Biggs,
1972; Han, 19768; Powcll, 1977; Murray and Wright, 1982) or linearly constrained subproblems
(c.g., Rosen and Kreuser, 1972; Robinson, 1972; Murtagh and Saunders, 1982).

2. Overview of an active-set method

Apart from the requirement of feasibility, the optimality conditions for a constrained problem
involve only the constraints that are active (hold with equality) at the solution. Active-set mcthods
are based on an attempt to identify the constraints that are active al the solution, and to treat
these as cqualily constraints in the subproblems that define the iterates. The temporary equalities
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3. Represcntation of the working set and associated factorisations 3

are used to reduce the dimensionality of the minimization. In a typical active-set method, the
direction of search is computed by solving a (usually simplified) subproblem in which a subset of
the problem constraints are treated as gqualities. The subset of the problem constraints used to
compute the search direction will be ealled the working set.

Before giving a detailed description of the special treatment of bounds, we consider some of
the main steps in an active-set method. Our concern is with the k-th iteration, and the associated
iterate xx. We denote by Cy the matrix whose rows are the constraints in the curreat working
sct, by ¢; the number of constraints in the working sct (the number of rows of Ck), and by g, the
gradient of the function to be minimized, evaluated at z;. The matrix Z; is defined as a matrix
whose columns span the null space of Cy (i.e., Cx Z, = 0); this paper is primarily concerned with
active-set methods in which Zy is stored explicitly.

The major operations associated with the current working set are:

(i) formation of the projected gradient Z7g,;
(ii) solution of the linear system
ZiH Zp, = 2], (1)

for the (n — ;)-dimensional vector py;
(iii) caleulation of the scarch dircction px = Zip,;
(iv) calculation of a Lagrange multiplier estimate Ay by solving

m)f" ICEM — vl (2)

for some vector vy.

(These quantities may be computed in other mathematically equivalent forms; see Gill, Murray
and Wright (1981) for a discussion of alternatives.)

The matrix Iy in (1) usually represents sccond-derivative information about the objective
function, but is not nccessarily stored explicitly. For example, ITy may be the cxact {lessian of
the objective function in a quadratic program, or a factorized representation of the lessian in a
linear lcast-squares problem. In some methods, Iy will be a quasi-Newton approximation of the
Hessian matrix, or Z1H, Z, itsclf will be approximated. For simplicity, we shall always refer to
H} as the “llessian”, and to ZF/H, 7, as the “projected Hessian”.

3. Representation of the working set and associated factorizations

Our concern in this section is with the factorizations used in an active-set algorithm, and the
cffect of the scparate treatment of bounds. We shall assume that rank (Cx) = ti, i.c. that the
rows of Cy are lincarly independent. (In practice, this condition can be enforced by suitable
choice of the working sct; sce Gill et al., 1982a.) Ior simplicity of notation, we temporarily drop
the subscript k associated with the current iteration.

At a typical iteration, the working Mt of ¢ constraints will include a mixture of general
constraints and bounds. Il thc working sct contains any simple bounds, those variables will be
fixed on Lhe corresponding bounds during the given iteration; all other variables will be regarded
as free. We use the suffices “FX” and “FR” o denotc itemns associated with the two types of
variable. Supposc that C contains n,, bounds and m, general constraints (so that t = n, +m,.).
Liet A denote the matrix whose rows are the m, general constraints in the working set, and let
nyy denote the number of free variables (ngn = n — n,,). If bounds are not treated scparately,
nex =0, nyp = n,and m, = ¢,




4 Optimisation with a Mixture of Bounds and General Constraints

In the implementation of an active-sct method, the indices of the free variables and of
the gencral constraints in the working sct may be stored in lists (and relevant vectors ordered
accordingly). Hence, we shall assume without loss of generality that the last n,y variables are
fixed. The matrix of constraints in the working set can then be written as

o=("4")=(a 42) .

where A, is an m, X ng, matrix, and I;x denotes an n,-dimensional identity matrix.

The first matrix that must be available in order to perform the calculations (i) through (iv)
is the matrix Z, whose columus form a basis for the set of vectors orthogonal to the rows of C.
The special form of (3) means that Z also has a special form, which involves only the columns of
A corresponding to [rec variables. Let n; denote n — ¢, the number of columns of Z. An n X n,
matrix Z whose columns are orthogonal to the rows of C in (3) is given by

=(7) 2

where Z,, is an n,p X n; matrix whose columns form a basis for the subspace of A,s (i.e.,
AspZrq = 0). (If m, is zero, Zpp is the ny,-dimensional identity matrix.)

We shall obtain the matrix Zyn in (4) from a variant of the usual orthogonal factorization
which we shall call the TQ factorization. (The rcasons for using the TQ factorisation will be
discussed in Section 5.3, when we consider procedures for updating the matrix factorizations
following a constraint deletion.) The T'Q factorization of Ayg is defined by

AerQ@=(0 T), (5)

where @ is an n;y X n,, orthonorina! matrix, and T is an m, X m, “reverse” triangular matrix
such that T;; = 0 for i + j < m,. We illustrate the form of T with a 4 X 4 cxample:

x

x x x x

(Clearly, T is simply a lower-triangular matrix with its columns in reverse order.) From (5) it
follows that the first n, columns of @ can be taken as the columns of the matrix Z,,. We denote
the remaining columns of @ by Y, (the columns of Yy form an orthogonal basis for the subspace
of vectors spanned by the rows of A,).

The TQ factorization for the full matrix C (3) has the form

C(Q 0 )=( 0 Irx)(zru Y 0 )=(0 0 I ) (6)
0 lrx Arn Arx 0 0 lrx 0T Arx
We cinphasize that the usefulncss of the TQ factorization does not depend on separate

treatment of bounds, since the TQ [factorization of the full matrix C may also be computed
and updated using the procedures to be described in an implementation based on the form LCI.
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4. Calculation of the search direction and Lagrange multipliers

The calculations in Scction 2 simplify when the working set and its factorization have the special
forms (3), (4) and (8). From (4) it follows that the search direction has the form p = (pI, 0)T.
Further, ZTg = 27 g, and Z2THZ = 2ZT H, Z,.. Conscquently, the computation of Prr
involves three steps: forming the vector Z7 g, ; solving the linear system

ZrnIIrquni’: = _Z:ngrn (7)

for the vector p,; and forming the vector pey = Zpnp,. (In certain contexts, such as quadratic
programming and lincar least-squares, the known form of the objective function allows substantial
savings in solving (7).) The work involved is reduced as ngx increases; thercfore, if the working set
contains any bound constraints, less work is required if bound constraints arc treated separately.
In the active-set algorithms of interest, the matrix in (7) is assumed Lo be positive definite,
and thus (7) is solved using the Cholesky factorisation of ZT Il Z, . (sce, c.g., Wilkinson, 1965;

Stewart, 1973):
ZZ‘RIIFRZFR = RTR! (8)

where R is upper triangular.

Simplifications also arisc in solving equation (2) for the Lagrange multiplicr cstimates. Let M
be partitioned into an m -vector X, (the multiplier estimates corresponding to the general linear
constraints) and an n,-vector A.x (the mulliplier estimates corresponding to the active bound
coustraints). From (6), the equations defining the multipliers are

0 AT ) S— AT\ Ven
o= )0 =G ) = () ®
Il-‘x Apx L XFX + Arxxl‘ FX

where == means “equal in the least-squares sense”.
The vector X\, is the least-squares solution of the first n,, cquations of (9) (which are
compatible if ZT, v, = 0):
T
App N 75 Vpq.

It follows from (6) that A, may be obtained by forming )’,1.‘,,1),.R and solving the m, X m, non-
singular reverse-triangular system

™\, = YT v,..

The multiplicr estimates associated with the bound constraints may then be computed directly
by substituting in the remaining equations of (9), i.e.

— T
)‘rx = Upx Arxxl.'

Note that if m, is zero, Mgy is given simply by vey.

The nuinber of multiplications required to solve (8) in the manncr given above is nm, to
form YT v, and AT )\,, and {m? to solve the reversc-triangular system. The saving in work
compared Lo treating all constraints uniformly is %nﬁx + ngx(n + m,) multiplications.

5. Implementation and storage

When implementing an active-set method based on the TQ and Cholesky [lactorizations, the
matrices to be stored include, from (8) and (8), the nep X n.x matrix @, the m,-dimensional
reverse triangular matrix T, and the n;-dimensional upper triangular matrix 2. The matrix Q
is conceptually partitioned into two submatrices — Z;p, the first n, columns, and Y;y, the last
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8 Optimization with a Mixture of Bounds and General Constraints

m, columns, i.e.
Q= (ch an)-

Changes in the working set will cause changes in these four matrices. From (8) we sec that any
transformations applied to the columns of Y will also be applied to the columns of T; from
(8) it follows that any transforinations applied to the columns of Z,, will also be applicd to the
columns of R. (The matrix R may also be changed in other ways — for example, by a low-rank
modilication in a quasi-Newton method. However, we consider only the effect of changes in the
working set.)

In the implementation, the npa X nyp matrix Q is stored explicitly, in the upper left corner
of sufficiently large array ZY (in a general problem, n,, may be as large as n). The dimensions
of B and T are complementary (in the sense that n, + m, = nyg), and hence both matrices
are stored in the upper left corner of a single array RT. The matrix R is stored in the first n,
columans (corresponding to the columna of Zg,), and the matrix T in the following m, columns
(corresponding to the columns of Y,,). With this storage arrangement, rotations applied to
columns of ZY can be applied to exactly the same columns of RT. We have chosen to store the
triangular matrices I and T as two-dimensional arrays (rather than in a “packed” form), so that
separate subroutines arc not required to apply linear algebraic operations to triangular matrices.
(In our implementation we use a sct of linear algebra subroutines similar to the BLAS (Lawson
et al., 1979) to perform these opcrations.)

The following diagram illustrates the parallel storage arrangements in 2Y and RT for the case
n; = 5 and m, = 3. The elements of Zpp, Yrn, £ and T are denoted by z, y, r, and ¢,
respectively.

nz my, nEx
2 2 3 1 2|yyy
4 2 T 2 2y vyy
T 2 2 %3 B(YYyYy
2 2 3 3 32|y yy
2 5 3 % 3|y yy
=|y 3 2 3 3 Yy Yy
2 31 2 2 2|y yy
3 32 2 % 3({YYY
1
1
1
r rrrer t
r rr t
rrrjt t t
RT = rr
r

8. Changes in the working set

Unless the correct active sct is known a priori, the working set must be modified during the
exccution of an active-sct mcthod, by adding and deleting constraints. Because of the simple




6. Changes in the working sct 7

nature of these changes, it is possible to update the nccessary matrix factorizations to correspond
‘ with the new working set. In the remainder of this section, we consider how to update the TQ
! factorization (6) and the Cholesky factorization (8) following . single change in the working sct.
If several constraints are to be added or deleted, the procedures are repeated as necessary.
i The discussion ol updates will assume a gencral familiarity with the properties of plane
rotations. Sequences of planc rotations are used to introduce zeros into appropriate positions of
a vector or matrix, and have exceptional propertics of numerical stability (sce, c.g., Wilkinson,
1965, pp. 47-48).
We shall illustrate cach modification process using sequences of simple diagrams, following
| : the conventions of Cox (198!) to show the effects of the plane rotations. Each diagram dcepicts
‘ ; the changes resulting from one plane rotation. The following symbols are used:

i x denotes a non-zero clement that is not altered;

m denotes a non-zero element that is modified;

f denotes a previously zero element that is filled in;

0 denotes a previously non-zero element that is annihilated; and
P - (or blank) denotes a zero cleinent that is unaltered.

In the algebraic representation of the updates, barred quantities will represent the “new” values.

6.1. Adding a general constraint. When a gencral constraint is added to the working set, its
index can simply be placed at the end of the list of indices of gencral constraints in the working
set. Therefore, without loss of generality we shall assume that the new constraint is added as
the Jast row of A. The row dimension of Ayz and the dimension of T will thus increasc by one,
and the column dimension of Z,r, will decrease by one. (Note that the column dimension of A.q
is unchanged.) Let a” denote the new row of A, partitioned into (a], al,). Let w” denote the
| vector al @, and partition w7 as (wT  wT), so that w7 consists of the first n; components of w?.
From (5), it follows that

. Agn 0T 0T
""Q=( o, )Q=(arao )=(wr wr)'

We sce that a new matrix @ can be obtained by applying a sequence of planc rotations on the right
of @ to transform the vector w! Lo suitable form; the transformed matrix @ then becomes @. The
scquence of rotations take lincar combinations of the elements of w7 to reduce it to a multiple

; (say, 7) of eI, where e, denotes the n,-th coordinate vector. The rotations are constructed to
alter pairs of components in the order (1,2), (2,3), ..., (ns — 1, n;), as indicated in the following
diagrams, which depict the veclor wr as it is reduced to 7c'f:

(x x x x x) > (0mx xx) = (- 0mxx) — (- - 0mxx) = (- - 0m)

The effect of these transformations can be expressed algebraically as

awa(§ §)=ro0=(3 § B)=to 1

Dy construction, the rotations in P affect only the first n,; columns of @, so that the last m,
columns of Q are identical to those of @, and the first n, columns of @ are linear combinations
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of the first n, columns of Q. Hence,

ZFRP=(Z?F y),

where y, the transformed last column of Z,,, becomes the first column of ¥yp.

The plane rotations applied to Zgx also transform the Cholesky factor 12 of the projected
Hessian. The chosen order of the rotations in P means that each successive rotation has the
effect of introducing a subdiagonal clement into the upper-triangular matrix R, as shown in the
following scquence of diagrams. For clarity, we again show the vector w:’; at the top as it is
reduced to (0 '7)T; the matrices underncath represent the transformed version of R.

X X X X x 0mx x x + 0mx x » 0 m x s o« 0m
x x X X X min x x x X Mmx X x x mm x x x mm
X xn X X fmx x x xmmxx  xxmmx X x x mm
X X X x % X fmx x xmmx_’ x x mm

x x x % x X f m x x mm

x x x x fm

Since the last column of the matrix 7. P is not part of Zes, the last column of RP can be
discarded. The remaining matrix is then restored to upper-triangular form by a forward sweep
of row rotations (say, the matrix P), which is applied on the left to climinale the subdiagonal
elements, as shown in the followirg diagrams.

x

X X x X m m x X x x x X X X X X
X X X X 0O mmm m m m x X X %X x
x X X — x X - 0O0mm mm - x %
x X x x x x 0 m m

4 x x x 0

Let R denote the matrix 2P with its last column deleted; then we have

e (8)

where R is upper-triangular. Note that the rotations in P affect R, but not @ or T.

The number of multiplications associated with adding a general constraint includes the
following (where only the highest-order term is given): n2;, to form aZ,, @; 3n2 for the two sweeps
of rotations applied to It; and 3n,xn, to transform the appropriate columns of Q. (We assume
the three-multiplication form of a plane rotation; sec Gill et al., 1974.)

6.2. Adding a bound. When a bound constraint is added to the working sct, a previously
free variable becomes lixed on its bound. Thus, the column dimension of A,.,, the column and
row dimensions of Z,, and the dimension of @ are decreased by one. The dimension of T is
unaltered.

We assume that the new fixed variable corresponds to the Jast (n.z-th) column of Agg; in
practice, the index of the variable at the end of the list of free variables is moved to the position
of the newly fixed variable. Let ez',‘ denote the ng,-th coordinate vector. Addition of the ngp-th
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variable to the working set causes the vector el to be added as the first row of C, i.e.

o~(%)

and, in effect, moves the last column of Asg into Apy. Let wT denote the n.-th row of @, and
note that w has unit Euclidean length. As in Section 6.1, let w” be partitioned as (wT 7).
After adding the bound to the working set, it follows from (3) and (10) that

T ..T
0 T w,; w, 0
0(3 I )=( o ) ((g 10 )= 00 Lx | (1
FX C FX 0T Arx

In order to compute the updated TQ factorization, the first row of thc matrix on the right-
hand side of (11) must be reduced to the npu-th coordinate vector. This is achicved by a forward
sweep of plane rotations (say, P) that alter columns 1 through n,,, in the order (1,2), ...,
(nen —1, 14, such that the ny.-th row and column of @ are transformed to the ny,-th coordinate
vector. The cffect of the rotations in P on the matrix @ can be represented as

— V, —_— Q 0 ) —_— ( ZI“R ?PR o )
P=(2Zn Yeu)P= = .
© ( ) ( 01 0 01

The effect of the rotations in P on R and T is best understood by considering them in two
groups. Firstly, the rotalions that alter columns 1 through n, of @ affect the columns of R
exactly as deseribed in Section 6.1, and a set of row rotations are then applicd to restore the
upper-triangular form of . Secondly, the rotations that alter columns n, through ngq of @
cause clements to be added above the reverse diagonal of 7', as shown in the following diagrams.
The vector at the top shows the order of the rotations, with 7" below.

X X X X X 0mx x x 0m x x 0 mx 0 m
x x x x f m

X X — x — x X = fmx =— x mm

x X X x X X fmx x x mm x X x mm

X X X X f mx x x x mm x x X X M m x x X x mm

The first m, columns of the transformed T become T, and the remaining column becomes
the column of A corresponding to the new fixed variable.
Let I}, denote the (ngyx + 1)-dimensional identily matrix. The final conliguration is thus

C,(Q 0)(P 0)—_-(:*(0 0)___(0(—)1;,‘ )
0 Ix /\ 0 Iy 0 I, 0T Aux

as desired.

The number of multiplications associated with adding a bound constraint includes all those
nceded to add a genceral constraint, with an additional 3m? to modily T.
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6.3. Deleting a general constraint. When a general constraint (say, the i-th) is dcleted from
the working set, the row dimension of A, and the dimension of T are decreased by one, and the
column dimension of Z,, is increased by one. (As in Scchon 6.1, the columnn dimension of A,,
is not altered.) From (5), we have

ruq=(o S):

where S is an (m, — 1) X m, matrix such that rows 1 through ¢ — 1 are in reverse triangular
form, and the remaining rows have one extra element above the reverse diagonal. In order to
reduce the last m, — 1 columns of S to the desire/l reverse triangular form of T, a backward
sweep of plane rotations (say, P) is applied on the righl, to take linear combinations of columns
(m,—-1+1,m,—1),...,(2,1). The effect of these rotations is shown in the following diagrams
for the case m;, = 68 and i = 3:

x x x x
x x x % X X x x

X X X X -~ 0 m x x — x X X @ — x X X

X X X X X x M m x x 0 m x x x X X X x
X X X X X X x x M m x x x M M x X X, 0 m x x x x

This transformation may be expressed as

. I 0
Aer( 0 P )=Arnq=(o T)
The first n, columns of @ are not allected by the rotations in P, and hence the first n; columns
of Z,p arc identical to the columns of Zy,. The matrix Z,y is given by

Zen = (Zen 2 ) (12)

where the new (last) column z of Zew i3 a linear combination of the relevant columns of Yip.
(Wben ¢ = m,, no reduction at all is nceded, and 2 is just the first column of Yen.)
Because of the form (12), the new projected Hessian matrix Z1, H . Z,, is given by

T
ZZRIIPHZP.,=RTR=(R k ) (13)
oT ¢

where v = ZT H, .z and 0 = 2T I, 2. (Note that [T,q = I;.) In cases when H., or RTR is
a quasi-Newton approxiwmation, the new row and column of (13) may nced to be approxnmat.cd

Let r denote the solution of RTr = v; if ZT_H, Z,, is positive definite, the quantity 8 — ¢Ti
raust be positive. In this case, only one furt.her step of the row-wise Cholesky factonzatlon is
nceded to compute the new Cholesky factor R, which is given by

= R r
R =
( 0 » )’
where p? = 0—rTr. If the matrix ZT, H_, Z,, is not positive definitc, the Cholesky factorisation
may be undefined or ill-conditioned, and other techniques should be used to modify the factorisa-

tion without excessive additional computation or loss of numerical stability (e.g., see Gill et al.,
1982a, for techniques applicable to quadratic programming).
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The number of multiplications associated with deleting the i-th general constraint includes
the following (where only the highest-order term is glven) 3-(m,,—a)’ to operate on T; 3n,.(m, —i)
to transform Q; n?, to forin Iynz; npan, to form ZT H,.z and } jn? to compute the additional
row of the Cholesky factor. 1L is clearly advantageous to delcte constraints at the end of the list
of general constraints in the working set; hence, the indices of geueral cquality constraints are
always placed at the beginning of the list.

The justification for using the T'Q factorization arises from this part of an active-set method.
From a theoretical viewpoint, Z; would remain an orthogonal basis for the null space of A,,
regardless of the position in which the new column appeared. However, in order to update the
Cholesky factors efficiently, the new column must appear afler the columns of Z,, (otherwise,
{13) would not hold). The TQ factorization has an implementation advantage because the new
column of Z,, autormatically appears in the correct position alter deletion of a constraint from
the working set. With other alternatives, the housekeeping associated with the update of R is
more complicated. For example, in an implementation based on the L@ factorization, the new
column might be moved to the end of Zgg, or a list could be maintained of the locations of the
columns of Z.q; another alternative is to store the columns of Z., in reversc order (see Gill and
Murray, 1977).

6.4. Deleting a bound. When a bound constraint is deleted from the working sct, a previously
fixed variable becomes free. In this case, the column dimension of Agg, the column and row
dimensions of Z,p and the dimension of @ are increased by one; the dimension of 7' remains
unaltered. In practice, the index of the newly [reed variable is added at the end of the list of
free variables. Hence, we assume without loss of generality that the {ngg + 1)-th variable is to be
freed from its bound, so that € is defined by deleting row ngn + 1 of C. In effect, the boundary
between A, and A,y is “shilted” by one column; this corresponds to augmenting @ by a row
and column of the identity, and reducing by one the dimension of the identity malrix associated
with the fixed variables.

Let a denote the column of A corresponding to the newly freed variable, and let [, denote
the (nyx — 1)-dimensional identity matrix. The result of dcleting the bound constraint is then

- Qo0 0 -
(€)= (B 8)-C )
0 Ipx Arg GArx 00 ,;x OTaApx

To reduce the augmented matrix (T @) to the desired form (0 7T, a backward sweep of
columa planc rotations (say, P) is applied in the order (m, + 1,m,),..., (2, 1), as shown in the.
following diagrams:

x X Om L x x

X X X x m m 0 m x x X ¢ X x
— — - -

x X X X x x m m x m m x 0 m x x x X X

X X X X X X x x m m x x m m x x mm x x O0m x x x

The rotations in P affect columns ng + 1 through n,. + 1 of the augmented Q. The first n,
columns of Z,, are thus simply those of Z,», with a row of zeros added at the bottom. It follows
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Zyn
Z\rn = ( z ); (14)
0

‘ where the last element of z will be nonzero.

' The effect of freeing the (nyn + 1)-th variable is to augment Hy, by the row and column

‘ corresponding to the newly releascd variable. Since (14) is similar to (12), the Cholesky factors of ‘
the new projected Ilessian can be obtained from the existing factors by performing one further step l ']

! of the factorization as before (assuming that the updated projected Hessian is positive definite).

1 The number of multiplications associated with decleting a bound constraint includes the

: following, where only the highest-order term is given: $m? to operate on T; 3m,nyp to transform
Q; n2,, to form H.nz; nepny to form ZT H_ z; and in? to update R.

that 2, is given by
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